All-perovskite-based unassisted photoelectrochemical water splitting system for efficient, stable and scalable solar hydrogen production


  • Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. H., Hansora, D., Sharma, P., Jang, J. W. & Lee, J. S. Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. & Wang, D. Toward practical solar hydrogen production. Chem 4, 405–408 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ye, K. H. et al. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. 10, 3687 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. H. et al. Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat. Commun. 7, 13380 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017).

    Article 

    Google Scholar
     

  • Jiang, C., Moniz, S. J. A., Wang, A., Zhang, T. & Tang, J. Photoelectrochemical devices for solar water splitting – materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, S. et al. Hybrid organic–inorganic materials and composites for photoelectrochemical water splitting. ACS Energy Lett. 5, 1487–1497 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, J., Dong, C., Idriss, H., Mohammed, O. F. & Bakr, O. M. Metal halide perovskites for solar‐to‐chemical fuel conversion. Adv. Energy Mater. 10, 1902433 (2019).

    Article 

    Google Scholar
     

  • Chen, P. F., Ong, W. J., Shi, Z., Zhao, X. & Li, N. Pb‐based halide perovskites: recent advances in photo(electro)catalytic applications and looking beyond. Adv. Func. Mater. 30, 1909667 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W., Tade, M. O. & Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44, 5371–5408 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W., Xu, M., Xu, X., Zhou, W. & Shao, Z. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew. Chem. Int. Ed. 59, 136–152 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hu, S., Xiang, C., Haussener, S., Berger, A. D. & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Da, P. et al. High-performance perovskite photoanode enabled by Ni passivation and catalysis. Nano Lett. 15, 3452–3457 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nam, S., Mai, C. T. K. & Oh, I. Ultrastable photoelectrodes for solar water splitting based on organic metal halide perovskite fabricated by lift-off process. ACS Appl. Mater. Interfaces 10, 14659–14664 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., Yang, S., Chen, X., Wen, T. & Yang, H. G. Surface-functionalized perovskite films for stable photoelectrochemical water splitting. J. Mater. Chem. A 5, 910–913 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hoang, M. T., Pham, N. D., Han, J. H., Gardner, J. M. & Oh, I. Integrated photoelectrolysis of water implemented on organic metal halide perovskite photoelectrode. ACS Appl. Mater. Interfaces 8, 11904–11909 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9, 490–498 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Integrating low‐cost earth‐abundant co‐catalysts with encapsulated perovskite solar cells for efficient and stable overall solar water splitting. Adv. Func. Mater. 31, 2008245 (2020).

    Article 

    Google Scholar
     

  • Poli, I. et al. Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water. Nat. Commun. 10, 2097 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, Y. et al. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2, e1501764 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D. K. & Choi, K. S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 3, 53–60 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, T. W. & Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, S. et al. Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. J. Mater. Chem. A 5, 19091–19097 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 30, e1800486 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, S. et al. Harvesting of infrared part of sunlight to enhance polaron transport and solar water splitting. Adv. Func. Mater. 32, 2110284 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tolod, K., Hernández, S. & Russo, N. Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges. Catalysts 7, 13 (2017).

    Article 

    Google Scholar
     

  • Ahmet, I. Y. et al. Demonstration of a 50 cm2 BiVO4 tandem photoelectrochemical–photovoltaic water splitting device. Sustain. Energy Fuels 3, 2366–2379 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Landman, A. et al. Decoupled photoelectrochemical water splitting system for centralized hydrogen production. Joule 4, 448–471 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Photoelectrochemical Demonstrator Device for Solar Hydrogen Generation, PECDEMO Project Final Report 621252 (Helmholtz-Zentrum Berlin (HZB) for Materials and Energy, GmbH, 2016).

  • Min, H. et al. Efficient, stable solar cells by using inherent bandgap of alpha-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, J. et al. Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahlawat, P. et al. A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure alpha-FAPbI3. Sci. Adv. 7, eabe3326 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, L. Q. et al. Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals. J. Am. Chem. Soc. 139, 3320–3323 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, C. et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chueh, C. C., Li, C. Z. & Jen, A. K. Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8, 1160–1189 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, B. W. et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6, 419–428 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, Y. K., Kim, J. H., Jo, Y. H. & Lee, J. S. Precipitating metal nitrate deposition of amorphous metal oxyhydroxide electrodes containing Ni, Fe, and Co for electrocatalytic water oxidation. ACS Catal. 9, 9650–9662 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with earth-abundant metals. Science 369, eabc3183 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. M. et al. High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. Nat. Commun. 11, 5509 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francas, L. et al. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nat. Commun. 10, 5208 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, J. et al. 2D bismuthene as a functional interlayer between BiVO4 and NiFeOOH for enhanced oxygen‐evolution photoanodes. Adv. Func. Mater. 32, 2207136 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, W., Prabhakar, R. R., Tan, J., Tilley, S. D. & Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 48, 4979–5015 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacobsson, T. J., Fjällström, V., Sahlberg, M., Edoff, M. & Edvinsson, T. A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6, 3676–3683 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kim, M. et al. Oxygen-vacancy-introduced BaSnO3−δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 31, e1903316 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Karuturi, S. K. et al. Perovskite photovoltaic integrated CdS/TiO2 photoanode for unbiased photoelectrochemical hydrogen generation. ACS Appl. Mater. Interfaces 10, 23766–23773 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pihosh, Y. et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higashi, T. et al. Transparent Ta3N5 photoanodes for efficient oxygen evolution toward the development of tandem cells. Angew. Chem. Int. Ed. 58, 2300–2304 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fan, R. et al. Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni–Mo/Ni. J. Mater. Chem. A 7, 2200–2209 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. A. et al. Electrodeposited heterogeneous nickel-based catalysts on silicon for efficient sunlight-assisted water splitting. Cell Rep. Phys. Sci. 1, 100219 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Song, Z. N. et al. All-perovskite tandem photoelectrodes for unassisted solar hydrogen production. ACS Energy Lett. 8, 2611–2619 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hansora, D., Cherian, D., Mehrotra, R., Jang, J. W. & Lee, J. S. Fully inkjet-printed large-scale photoelectrodes. Joule 7, 884–919 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, J. W. et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule 5, 2420–2436 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, I. Y. et al. Two-terminal mechanical perovskite/silicon tandem solar cells with transparent conductive adhesives. Nano Energy 65, 104044 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fehr, A. M. K. et al. Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%. Nat. Commun. 14, 3797 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Translate »