Boosting photocatalytic water splitting of TiO2 using metal (Ru, Co, or Ni) co-catalysts for hydrogen generation


  • Abe, J. O., Popoola, A. P. I., Ajenifuja, E. & Popoola, O. M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrog. Energy 44, 15072–15086 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lubitz, W. & Tumas, W. Hydrogen: An overview. Chem. Rev. 107, 3900–3903 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mosca, L. et al. Process design for green hydrogen production. Int. J. Hydrog. Energy 45, 7266–7277 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hora, C., Dan, F. C., Rancov, N., Badea, G. E. & Secui, C. Main trends and research directions in hydrogen generation using low temperature electrolysis: A systematic literature review. Energies 15, 6076 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pal, D. B., Singh, A. & Bhatnagar, A. A review on biomass based hydrogen production technologies. Int. J. Hydrog. Energy 47, 1461–1480 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Younas, M., Shafique, S., Hafeez, A., Javed, F. & Rehman, F. An overview of hydrogen production: Current status, potential, and challenges. Fuel 316, 123317 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shiva Kumar, S. & Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 8, 13793–13813 (2022).

    Article 

    Google Scholar
     

  • Osman, A. I. et al. Hydrogen production, storage, utilisation and environmental impacts: A review. Environ. Chem. Lett. 20, 153–188 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shiva Kumar, S. & Himabindu, V. Hydrogen production by PEM water electrolysis: A review. Mater. Sci. Energy Technol. 2, 442–454 (2019).


    Google Scholar
     

  • Kojima, H. et al. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production. Int. J. Hydrog. Energy 48, 4572–4593 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Konieczny, A., Mondal, K., Wiltowski, T. & Dydo, P. Catalyst development for thermocatalytic decomposition of methane to hydrogen. Int. J. Hydrog. Energy 33, 264–272 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Abdelhamid, H. N., Goda, M. N. & Said, A.E.-A.A. Selective dehydrogenation of isopropanol on carbonized metal–organic frameworks. Nano-Struct. Nano-Objects 24, 100605 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Abdelhamid, H. N. A review on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrog. Energy 46, 726–765 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kassem, A. A., Abdelhamid, H. N., Fouad, D. M. & Ibrahim, S. A. Metal-organic frameworks (MOFs) and MOFs-derived CuO@C for hydrogen generation from sodium borohydride. Int. J. Hydrog. Energy 44, 31230–31238 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Abdelhamid, H. N. UiO-66 as a catalyst for hydrogen production: Via the hydrolysis of sodium borohydride. Dalt. Trans. 49, 10851–10857 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Abdelhamid, H. N. Salts induced formation of hierarchical porous ZIF-8 and their applications for CO2 sorption and hydrogen generation via NaBH4 hydrolysis. Macromol. Chem. Phys. 221, 2000031 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hussein Hashem, Z., Abdel-Rahman, L. H., Gómez-Ruiz, S. & Nasser Abdelhamid, H. Cerium-organic framework (CeOF) for hydrogen generation via the hydrolysis of NaBH4. Results Chem. 7, 101412 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Balat, H. & Kırtay, E. Hydrogen from biomass: Present scenario and future prospects. Int. J. Hydrog. Energy 35, 7416–7426 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ajanovic, A., Sayer, M. & Haas, R. The economics and the environmental benignity of different colors of hydrogen. Int. J. Hydrog. Energy 47, 24136–24154 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Abdelhamid, H. N. Dehydrogenation of sodium borohydride using cobalt embedded zeolitic imidazolate frameworks. J. Solid State Chem. 297, 122034 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Abdelhamid, H. N. Zeolitic imidazolate frameworks (ZIF-8, ZIF-67, and ZIF-L) for hydrogen production. Appl. Organomet. Chem. 35, e6319 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Iqbal, M. N. et al. Mesoporous ruthenium oxide: A heterogeneous catalyst for water oxidation. ACS Sustain. Chem. Eng. 5, 9651–9656 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Pang, Y., Xu, H., Martinez, A. & Chen, K. S. PEM fuel cell and electrolysis cell technologies and hydrogen infrastructure development: A review. Energy Environ. Sci. 15, 2288–2328 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Faye, O., Szpunar, J. & Eduok, U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen. Int. J. Hydrog. Energy 47, 13771–13802 (2022).

    Article 
    CAS 

    Google Scholar
     

  • El-Bery, H. M. & Abdelhamid, H. N. Photocatalytic hydrogen generation via water splitting using ZIF-67 derived Co3O4@C/TiO2. J. Environ. Chem. Eng. 9, 105702 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Saleh, M. R., El-Bery, H. M. & Abdelhamid, H. N. Co@ZIF-8/TiO2 heterojunction for green hydrogen generation. Appl. Organomet. Chem. https://doi.org/10.1002/aoc.6995 (2022).

    Article 

    Google Scholar
     

  • Ni, M., Leung, M. K. H., Leung, D. Y. C. & Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ashokkumar, M. An overview on semiconductor particulate systems for photoproduction of hydrogen. Int. J. Hydrog. Energy 23, 427–438 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suguro, T., Kishimoto, F. & Takanabe, K. Photocatalytic hydrogen production under water vapor feeding: A minireview. Energy Fuels 36, 8978–8994 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xia, C. et al. Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: Progress and perspectives. Fuel 307, 121745 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bamwenda, G. R., Tsubota, S., Nakamura, T. & Haruta, M. Photoassisted hydrogen production from a water-ethanol solution: A comparison of activities of Au–TiO2 and Pt–TiO2. J. Photochem. Photobiol. A Chem. 89, 177–189 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Nikitenko, S. I., Chave, T., Cau, C., Brau, H.-P. & Flaud, V. Photothermal hydrogen production using noble-metal-free Ti@TiO2 core–shell nanoparticles under visible–NIR light irradiation. ACS Catal. 5, 4790–4795 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Khorashadizade, E. et al. Intrinsically Ru-doped suboxide TiO2 nanotubes for enhanced photoelectrocatalytic H2 generation. J. Phys. Chem. C 125, 6116–6127 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Epelle, E. I. et al. A comprehensive review of hydrogen production and storage: A focus on the role of nanomaterials. Int. J. Hydrog. Energy 47, 20398–20431 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Saleh, M., Abdelhamid, H. N., Fouad, D. M. & El-Bery, H. M. Enhancing photocatalytic water splitting: Comparative study of TiO2 decorated nanocrystals (Pt and Cu) using different synthesis methods. Fuel 354, 129248 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Nada, A., Barakat, M., Hamed, H., Mohmaed, N. & Veziroglu, T. Studies on the photocatalytic hydrogen production using suspended modified photocatalysts. Int. J. Hydrog. Energy 30, 687–691 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Eder, M. et al. Size and coverage effects of Ni and Pt co-catalysts in the photocatalytic hydrogen evolution from methanol on TiO2 (110). ACS Catal. 12, 9579–9588 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Biswas, S. et al. Black TiO2–x nanoparticles decorated with Ni nanoparticles and trace amounts of Pt nanoparticles for photocatalytic hydrogen generation. ACS Appl. Nano Mater. 4, 4441–4451 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. & Xu, R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 351, 779–793 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W., Liu, S., Nie, L., Cheng, B. & Yu, J. Enhanced photocatalytic H2 -production activity of TiO2 using Ni(NO3)2 as an additive. Phys. Chem. Chem. Phys. 15, 12033–12039 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322–2356 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing, D., Zhang, Y. & Guo, L. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem. Phys. Lett. 415, 74–78 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tian, H. et al. Fabrication of an efficient noble metal-free TiO2-based photocatalytic system using Cu–Ni bimetallic deposit as an active center of H2 evolution from water. Sol. Energy Mater. Sol. Cells 134, 309–317 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Luna, A. L. et al. Photocatalytic hydrogen evolution using Ni–Pd/TiO2: Correlation of light absorption, charge-carrier dynamics, and quantum efficiency. J. Phys. Chem. C 121, 14302–14311 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, L., Cheng, B., Wang, Y. & Yu, J. Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers. J. Colloid Interface Sci. 449, 115–121 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahruji, H., Bowker, M., Davies, P. R., Kennedy, J. & Morgan, D. J. The importance of metal reducibility for the photo-reforming of methanol on transition metal-TiO2 photocatalysts and the use of non-precious metals. Int. J. Hydrog. Energy 40, 1465–1471 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sreethawong, T., Suzuki, Y. & Yoshikawa, S. Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol–gel process with surfactant template. Int. J. Hydrog. Energy 30, 1053–1062 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kudo, A., Domen, K., Maruya, K. & Onishi, T. Photocatalytic activities of TiO2 loaded with NiO. Chem. Phys. Lett. 133, 517–519 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, J., Hai, Y. & Cheng, B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J. Phys. Chem. C 115, 4953–4958 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Oxygen vacancy-induced construction of CoO/h-TiO2 Z-scheme heterostructures for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 14, 28945–28955 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Translate »