Strategies and sustainability in fast charging station deployment for electric vehicles


  • International Energy Agency (IEA). CO2 emissions from fuel combustion. Tech. Rep.

  • Juyal, A. et al. India leaps ahead: Transformative mobility solutions for all. Tech. Rep. (2017).

  • Global EVoutlook 2018: Towards cross-modal electrification. International Energy Agency. Tech. Rep. https://www.iea.org/gevo2018/.

  • Van Fan, Y., Perry, S., Klemeš, J. J. & Lee, C. T. A review on air emissions assessment: Transportation. J. Clean. Prod. 194, 673–684 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Arslan, O. & Karasan, O. E. A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles. Transp. Res. B Methodol. 93, 670–695 (2016).

    Article 

    Google Scholar
     

  • Asamer, J., Reinthaler, M., Ruthmair, M., Straub, M. & Puchinger, J. Optimizing charging station locations for urban taxi providers. Transp. Res. A Policy Pract. 85, 233–246 (2016).

    Article 

    Google Scholar
     

  • Fourth Greenhouse Gas Study 2020. https://www.imo.org/.

  • Zhang, L., Sun, C., Cai, G. & Koh, L. H. Charging and discharging optimization strategy for electric vehicles considering elasticity demand response. eTransportation 18, 100262. https://doi.org/10.1016/j.etran.2023.100262 (2023).

    Article 

    Google Scholar
     

  • Liu, Z., Wu, Y. & Feng, J. Competition between battery switching and charging in electric vehicle: Considering anticipated regret. Environ. Dev. Sustain. 1, 1–22. https://doi.org/10.1007/s10668-023-03592-4 (2023).

    Article 

    Google Scholar
     

  • Chen, Y. Research on collaborative innovation of key common technologies in new energy vehicle industry based on digital twin technology. Energy Rep. 8, 15399–15407. https://doi.org/10.1016/j.egyr.2022.11.120 (2022).

    Article 

    Google Scholar
     

  • Min, C. et al. Trajectory optimization of an electric vehicle with minimum energy consumption using inverse dynamics model and servo constraints. Mech. Mach. Theory 181, 105185. https://doi.org/10.1016/j.mechmachtheory.2022.105185 (2023).

    Article 

    Google Scholar
     

  • Narasipuram, R. P. & Mopidevi, S. A novel hybrid control strategy and dynamic performance enhancement of a 3.3 kW GaN–HEMT-based iL2C resonant full-bridge DC–DC Power converter methodology for electric vehicle charging systems. Energies 16, 5811. https://doi.org/10.3390/en16155811 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mopidevi, S., Narasipuram, R. P., Aemalla, S. R. & Rajan, H. E-mobility: Impacts and analysis of future transportation electrification market in economic, renewable energy and infrastructure perspective. Int. Power Powertrains 11, 264–284. https://doi.org/10.1504/IJPT.2022.124752 (2022).

    Article 

    Google Scholar
     

  • Karimi, S., Zadeh, M. & Suul, J. A. Shore charging for plug-in battery-powered ships: Power system architecture, infrastructure, and control. IEEE Electrif. Mag. 8(3), 47–61 (2020).

    Article 

    Google Scholar
     

  • Mutarraf, M. U. et al. Electric cars, ships, and their charging infrastructure—A comprehensive review. Sustain. Energy Technol. Assess. 52, 102177 (2022).


    Google Scholar
     

  • Axsen, J. & Kurani, K. S. Hybrid, plug-in hybrid, or electric—What do car buyers want? Energy Policy 61, 532–543 (2013).

    Article 

    Google Scholar
     

  • Singh, K. V., Bansal, H. O. & Singh, D. A comprehensive review on hybrid electric vehicles: Architectures and components. J. Mod. Transp. 27(2), 77–107 (2019).

    Article 

    Google Scholar
     

  • Bell, R. A. A New Approach to Battery Management System Control Design for Increasing Battery Longevity.

  • Mitsubishi Outlander Phev. https://www.mitsubishicars.com/outlander-phev/2020#compare-vehicles.

  • Wang, Q., Liu, X., Du, J. & Kong, F. Smart charging for electric vehicles: A survey from the algorithmic perspective. IEEE Commun. Surv. Tutor. 18(2), 1500–1517 (2016).

    Article 

    Google Scholar
     

  • Cikanek, S. R. & Bailey, K. E. Regenerative braking system for a hybrid electric vehicle. In Proc. 2002 American Control Conference (IEEE Cat. No. CH37301), Vol. 4 (IEEE, 2002).

  • Rastogi, S. K. et al. Toward the vision of all-electric vehicles in a decade [energy and security]. IEEE Consumer Electron. Mag. 8(2), 103–107 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bell, R. A. A New Approach to Battery Management System Control Design for Increasing Battery Longevity. Diss. Clemson University (2017).

  • Wang, Q. et al. Smart charging for electric vehicles: A survey from the algorithmic perspective. IEEE Commun. Surv. Tutor. 18(2), 1500–1517 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Saxton, T. Plug in America’s Tesla Roadster Battery Study (2013).

  • Calearo, L., Thingvad, A. & Marinelli, M. Modeling of battery electric vehicles for degradation studies. In 2019 54th International Universities Power Engineering Conference (UPEC) (IEEE, 2019).

  • Pevec, D. et al. Electric vehicle range anxiety: An obstacle for the personal transportation (R)evolution. In 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia 1–8. https://doi.org/10.23919/SpliTech.2019.8783178 (2019).

  • Chakraborty, P. et al. Addressing the range anxiety of battery electric vehicles with charging en route. Sci. Rep. 12(1), 5588 (2022).

    Article 
    CAS 
    PubMed Central 
    ADS 
    PubMed 

    Google Scholar
     

  • Shrestha, S. et al. Measures to resolve range anxiety in electric vehicle users. Int. J. Low Carbon Technol. 17, 1186–1206 (2022).

    Article 

    Google Scholar
     

  • Rajper, S. Z. & Albrecht, J. Prospects of electric vehicles in the developing countries: A literature review. Sustainability 12, 1906 (2020).

    Article 

    Google Scholar
     

  • Nagmani, D. P., Tyagi, A. & Puravankara, S. Lithium-Ion Battery Technologies for Electric Mobility-State-of-the-Art Scenario (2022).

  • Narasipuram, R. P. & Mopidevi, S. A technological overview & design considerations for developing electric vehicle charging stations. J. Energy Storage 43, 103225 (2021).

    Article 

    Google Scholar
     

  • Xu, M., Meng, Q. & Liu, K. Network user equilibrium problems for the mixed battery electric vehicles and gasoline vehicles subject to battery swapping stations and road grade constraints. Transp. Res. B Methodol. 99, 138–166 (2017).

    Article 

    Google Scholar
     

  • Zhang, Q. et al. Factors influencing the economics of public charging infrastructures for EV—A review. Renew. Sustain. Energy Rev. 94, 500–509 (2018).

    Article 

    Google Scholar
     

  • Neubauer, J. & Wood, E. The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility. J. Power Sources 257, 12–20 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lam, L. & Bauer, P. Practical capacity fading model for Li-ion battery cells in electric vehicles. IEEE Trans. Power Electron. 28(12), 5910–5918 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Marques, P. et al. Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade. J. Clean. Prod. 229, 787–794 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gu, W. et al. A capacity fading model of lithium-ion battery cycle life based on the kinetics of side reactions for electric vehicle applications. Electrochim. Acta 133, 107–116 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L. et al. A study on parameter variation effects on battery packs for electric vehicles. J. Power Sources 364, 242–252 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • https://afdc.energy.gov/data/.

  • Greene, D. L. et al. Public charging infrastructure for plug-in electric vehicles: What is it worth? Transp. Res. D Transp. Environ. 78, 102182 (2020).

    Article 

    Google Scholar
     

  • Ronanki, D., Kelkar, A. & Williamson, S. S. Extreme fast charging technology—Prospects to enhance sustainable electric transportation. Energies 12(19), 3721 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rastogi, S. K., Sankar, A., Manglik, K., Mishra, S. K. & Mohanty, S. P. Toward the vision of all-electric vehicles in a decade [energy and security]. IEEE Consumer Electron. Mag. 8(2), 103–107 (2019).

    Article 

    Google Scholar
     

  • Yilmaz, M. & Krein, P. T. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 28(5), 2151–2169 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dubey, A., Santoso, S. & Cloud, M. P. A practical approach to evaluate voltage quality effects of electric vehicle charging. In 2013 International Conference on Connected Vehicles and Expo (ICCVE) 188–194 (IEEE, 2013).

  • Electric Mobility: Type 2 Charging Plug Proposed as the Common Standard for Europe. https://www.mennekes.com/.

  • Enslin, J. H. R. & Heskes, P. J. M. Harmonic interaction between a large number of distributed power inverters and the distribution network. IEEE Trans. Power Electron. 19(6), 1586–1593 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Thiringer, T. & Haghbin, S. Power quality issues of a battery fast charging station for a fully-electric public transport system in Gothenburg city. Batteries 1(1), 22–33 (2015).

    Article 

    Google Scholar
     

  • Wan, C., Huang, M., Tse, C. K. & Ruan, X. Effects of interaction of power converters coupled via power grid: A design-oriented study. IEEE Trans. Power Electron. 30(7), 3589–3600 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, Y. et al. Electric vehicle battery charging/swap stations in distribution systems: Comparison study and optimal planning. IEEE Trans. Power Syst. 29(1), 221–229. https://doi.org/10.1109/TPWRS.2013.2278852 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ahmad, F., Alam, M. S. & Shariff, S. M. A cost-efficient energy management system for battery swapping station. IEEE Syst. J. 13(4), 4355–4364. https://doi.org/10.1109/JSYST.2018.2890569 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sarker, M. R., Pandžić, H. & Ortega-Vazquez, M. A. Optimal operation and services scheduling for an electric vehicle battery swapping station. IEEE Trans. Power Syst. 30(2), 901–910. https://doi.org/10.1109/TPWRS.2014.2331560 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 334(6058), 928–935. https://doi.org/10.1126/science.1212741 (2011).

    Article 
    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Sbordone, D. et al. EV fast charging stations and energy storage technologies: A real implementation in the smart micro grid paradigm. Electr. Power Syst. Res. 120, 96–108. https://doi.org/10.1016/j.epsr.2014.07.033 (2015).

    Article 

    Google Scholar
     

  • Negarestani, S., Fotuhi-Firuzabad, M., Rastegar, M. & Rajabi-Ghahnavieh, A. Optimal sizing of storage system in a fast-charging station for plug-in hybrid electric vehicles. IEEE Trans. Transp. Electrif. 2(4), 443–453. https://doi.org/10.1109/TTE.2016.2559165 (2016).

    Article 

    Google Scholar
     

  • Sun, B., Dragičević, T., Freijedo, F. D., Vasquez, J. C. & Guerrero, J. M. A control algorithm for electric vehicle fast charging stations equipped with flywheel energy storage systems. IEEE Trans. Power Electron. 31(9), 6674–6685. https://doi.org/10.1109/TPEL.2015.2500962 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, D., Thakur, N. & Chen, J. Optimal design of energy storage system to buffer charging infrastructure in smart cities. J. Manag. Eng. 36(2), 4019048 (2020).

    Article 

    Google Scholar
     

  • He, Y., Song, Z. & Liu, Z. Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustain. Cities Soc. 48, 101530. https://doi.org/10.1016/j.scs.2019.101530 (2019).

    Article 

    Google Scholar
     

  • Khan, W., Ahmad, F. & Alam, M. S. Fast EV charging station integration with grid ensuring optimal and quality power exchange. Eng. Sci. Technol. 22(1), 143–152. https://doi.org/10.1016/j.jestch.2018.08.005 (2019).

    Article 

    Google Scholar
     

  • Mehrjerdi, H. & Hemmati, R. Stochastic model for electric vehicle charging station integrated with wind energy. Sustain. Energy Technol. Assess. 37, 100577. https://doi.org/10.1016/j.seta.2019.100577 (2020).

    Article 

    Google Scholar
     

  • Domínguez-Navarro, J. A., Dufo-Lopez, R., Yusta-Loyo, J. M., Artal-Sevil, J. S. & Bernal-Agustín, J. L. Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems. Int. J. Electr. Power Energy Syst. 105, 46–58. https://doi.org/10.1016/j.ijepes.2018.08.001 (2019).

    Article 

    Google Scholar
     

  • Hu, Y., Qian, K. & Gao, H. Design of electric vehicle charging station based on genetic algorithm. IOP Conf. Ser. Mater. Sci. Eng. 631(5), 52025. https://doi.org/10.1088/1757-899X/631/5/052025 (2019).

    Article 

    Google Scholar
     

  • Mehrjerdi, H. Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage. Int. J. Hydrogen Energy 44(23), 11574–11583. https://doi.org/10.1016/j.ijhydene.2019.03.158 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ahadi, A., Sarma, S., Moon, J. S., Kang, S. & Lee, J.-H. A robust optimization for designing a charging station based on solar and wind energy for electric vehicles of a smart home in small villages. Energies 11, 1728. https://doi.org/10.3390/en11071728 (2018).

    Article 

    Google Scholar
     

  • Fathabadi, H. Novel stand-alone, completely autonomous and renewable energy-based charging station for charging plug-in hybrid electric vehicles (PHEVs). Appl. Energy 260, 114194. https://doi.org/10.1016/j.apenergy.2019.114194 (2020).

    Article 

    Google Scholar
     

  • Slangen, T., van Wijk, T., Cuk, V. & Cobben, S. The propagation and interaction of supraharmonics from electric vehicle chargers in a low voltage grid. Energies 13(15), 3865 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dong, X., Mu, Y., Jia, H., Wu, J. & Yu, X. Planning of fast EV charging stations on a round freeway. IEEE Trans. Sustain. Energy 7(4), 1452–1461 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H., Fang, Y. & Zio, E. Risk assessment of an electrical power system considering the influence of traffic congestion on a hypothetical scenario of electrified transportation system in New York state. IEEE Trans. Intell. Transp. Syst. 22(1), 142–155. https://doi.org/10.1109/TITS.2019.2955359 (2021).

    Article 

    Google Scholar
     

  • Shun, T. et al. Charging demand for electric vehicle based on stochastic analysis of trip chain. IET Gener. Transm. Distrib. 10(11), 2689–2698 (2016).

    Article 

    Google Scholar
     

  • Mirzaei, M. J., Kazemi, A. & Homaee, O. A probabilistic approach to determine optimal capacity and location of electric vehicles parking lots in distribution networks. IEEE Trans. Ind. Inform. 12(5), 1963–1972 (2016).

    Article 

    Google Scholar
     

  • Luo, C., Huang, Y.-F. & Gupta, V. Placement of EV charging stations balancing benefits among multiple entities. IEEE Trans. Smart Grid 8(2), 759–768 (2017).


    Google Scholar
     

  • Shukla, A., Verma, K. & Kumar, R. Voltage-dependent modelling of fast charging electric vehicle load considering battery characteristics. IET Electr. Syst. Transp. 8, 221 (2018).

    Article 

    Google Scholar
     

  • Shukla, A. Optimal Planning and Impact Analysis of Electric Vehicle Fast Charging Stations in Distribution Systems. Diss. MNIT, Jaipur (2019).

  • Zhou, G., Zhu, Z. & Luo, S. Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm. Energy 247, 123437 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shukla, A., Verma, K. & Kumar, R. Planning of EV fast charging stations for distribution system coupled with transportation network. In 2019 IEEE Power & Energy Society General Meeting (PESGM) (IEEE, 2019).

  • EU Merge Project. Deliverable 2.1: Modelling Electric Storage Devices for Electric Vehicles. http://www.ev-merge.eu/imagesstories/uploads/MERGE_WP2_D2.1.pdf (2010).

  • Hu, S. R. & Wang, C. M. Vehicle detector deployment strategies for the estimation of network origin destination demands using partial link traffic counts. IEEE Trans. Intell. Transp. Syst. 9(2), 288–300 (2008).

    Article 

    Google Scholar
     

  • Mu, Y. F., Wu, J. Z., Jenkins, N., Jia, H. J. & Wang, C. S. A spatial temporal model for grid impact analysis of plug-in electric vehicles. Appl. Energy 114, 456–465 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hainan Statistical Yearbook 2014. http://www.stats.hainan.gov.cn/2014nj/indexch.htm.

  • Seungkirl, B., Hyunmyung, K. & Yongtaek, L. Multiple-vehicle origin-destination matrix estimation from traffic counts using genetic algorithm. J. Transp. Eng. 130(3), 339–347 (2004).

    Article 

    Google Scholar
     

  • Un-Noor, F., Padmanaban, S., Mihet-Popa, L., Mollah, M. N. & Hossain, E. A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies 10(8), 1–82. https://doi.org/10.3390/en10081217 (2017).

    Article 

    Google Scholar
     

  • Chan, C. C. & Chau, K. T. An overview of power electronics in electric vehicles. IEEE Trans. Ind. Electron. 44(1), 3–13. https://doi.org/10.1109/41.557493 (1997).

    Article 

    Google Scholar
     

  • Emadi, A., Rajashekara, K., Williamson, S. S. & Lukic, S. M. Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations. IEEE Trans. Veh. Technol. 54(3), 763–770. https://doi.org/10.1109/TVT.2005.847445 (2005).

    Article 

    Google Scholar
     

  • Chau, K. T., Wong, Y. S. & Chan, C. C. An overview of energy sources for electric vehicles. Energy Convers. Manag. 40(10), 1021–1039. https://doi.org/10.1016/S0196-8904(99)00021-7 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Morita, K. Automotive power source in 21st century. JSAE Rev. 24(1), 3–7. https://doi.org/10.1016/S0389-4304(02)00250-3 (2003).

    Article 

    Google Scholar
     

  • Lipman, T. E. & Delucchi, M. A. A retail and lifecycle cost analysis of hybrid electric vehicles. Transp. Res. D Transp. Environ. 11(2), 115–132. https://doi.org/10.1016/j.trd.2005.10.002 (2006).

    Article 

    Google Scholar
     

  • Shareef, H., Islam, M. M. & Mohamed, A. A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles. Renew. Sustain. Energy Rev. 64, 403–420. https://doi.org/10.1016/j.rser.2016.06.033 (2016).

    Article 

    Google Scholar
     

  • Akhavan-Rezai, E. et al. Uncoordinated charging impacts of electric vehicles on electric distribution grids: Normal and fast charging comparison. In 2012 IEEE Power and Energy Society General Meeting (IEEE, 2012).

  • Kundur, P., Balu, N. & Lauby, M. Power System Stability and Control (McGraw-Hill, 2009).


    Google Scholar
     

  • Putrus, G. A. et al. Impact of electric vehicles on power distribution networks. In 2009 IEEE Vehicle Power and Propulsion Conference (IEEE, 2009).

  • McCarthy, D. & Wolfs, P. The HV system impacts large scale electric vehicle deployments in a metropolitan area. In 2010 20th Australasian Universities Power Engineering Conference, Christchurch 1–6 (2010).

  • Putrus, G. A., Suwanapingkarl, P., Johnston, D., Bentley, E. C. & Narayana, M. Impact of electric vehicles on power distribution networks. In 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn 827–831 (2009).

  • Bollen, M. H. J. Understanding power quality problems. IEEE 1, 1–35 (2000).


    Google Scholar
     

  • De la Rosa, F. Harmonics and Power Systems (CRC Press, 2006).

    Book 

    Google Scholar
     

  • Gao, Z., Zhao, H., Zhou, X. & Ma, Y., Summary of power system harmonics. In 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing 2287–2291 (2017).

  • Lamoree, J., Mueller, D., Vinett, P., Jones, W. & Samotyj, M. Voltage sag analysis case studies. IEEE Trans. Ind. Appl. 30(4), 1083–1089 (1994).

    Article 

    Google Scholar
     

  • Battapothula, G., Yammani, C. & Maheswarapu, S. Multi-objective simultaneous optimal planning of electrical vehicle fast charging stations and DGs in distribution system. J. Mod. Power Syst. Clean Energy 7(4), 923–934 (2019).

    Article 

    Google Scholar
     

  • Asna, M. et al. Analysis of an optimal planning model for electric vehicle fast-charging stations in Al Ain City, United Arab Emirates. IEEE Access 9, 73678–73694 (2021).

    Article 

    Google Scholar
     

  • Gabbar, H. A. & Siddique, A. B. Technical and economic evaluation of nuclear-powered hybrid renewable energy system for fast charging station. Energy Convers. Manag. X 17, 100342 (2023).


    Google Scholar
     

  • Adetunji, K. E. et al. An optimization planning framework for allocating multiple distributed energy resources and electric vehicle charging stations in distribution networks. Appl. Energy 322, 119513 (2022).

    Article 

    Google Scholar
     

  • Awasthi, A. et al. Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm. Energy 133, 70–78 (2017).

    Article 

    Google Scholar
     

  • Moradi, M. H. et al. Optimal sitting and sizing of renewable energy sources and charging stations simultaneously based on differential evolution algorithm. Int. J. Electr. Power Energy Syst. 73, 1015–1024 (2015).

    Article 

    Google Scholar
     

  • Moupuri, S. K. R. Optimal planning and utilisation of existing infrastructure with electric vehicle charging stations. IET Gener. Transm. Distrib. 15(10), 1552–1564 (2021).

    Article 

    Google Scholar
     

  • Hou, H. et al. Optimal planning of electric vehicle charging station considering mutual benefit of users and power grid. World Electr. Veh. J. 12(4), 244 (2021).

    Article 

    Google Scholar
     

  • Xie, S. et al. The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks. Appl. Energy 269, 115006 (2020).

    Article 

    Google Scholar
     

  • Xu, D., Pei, W. & Zhang, Q. Optimal planning of electric vehicle charging stations considering user satisfaction and charging convenience. Energies 15(14), 5027 (2022).

    Article 

    Google Scholar
     

  • Battapothula, G., Yammani, C. & Maheswarapu, S. Multi-objective simultaneous optimal planning of electrical vehicle fast charging stations and DGs in distribution system. J. Mod. Power Syst. Clean Energy 7, 923–934 (2019).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Towards optimal planning of EV charging stations under grid constraints. IFAC-PapersOnLine 53(2), 14103–14108 (2020).

    Article 

    Google Scholar
     

  • Ali, A., Mahmoud, K. & Lehtonen, M. Optimal planning of inverter-based renewable energy sources towards autonomous microgrids accommodating electric vehicle charging stations. IET Gener. Transm. Distrib. 16, 219–232 (2022).

    Article 

    Google Scholar
     

  • Chippada, D. & Damodar Reddy, M. Optimal planning of electric vehicle charging station along with multiple distributed generator units. IJISA 14, 40–53 (2022).

    Article 

    Google Scholar
     

  • Bilal, M. & Rizwan, M. Coordinated Optimal Planning of Electric Vehicle Charging Stations and Capacitors in Distribution Systems with Vehicle-to-Grid Facility (2021).

  • Liu, Z., Wen, F. & Ledwich, G. Optimal planning of electric vehicle charging stations in distribution systems. IEEE Trans. Power Deliv. 28(1), 102–110 (2012).

    Article 

    Google Scholar
     

  • Nishimwe, H., Fidele, L. & Yoon, S.-G. Combined optimal planning and operation of a fast EV-charging station integrated with solar PV and ESS. Energies 14(11), 3152 (2021).

    Article 

    Google Scholar
     

  • Xia, F. et al. Optimal planning of photovoltaic-storage fast charging station considering electric vehicle charging demand response. Energy Rep. 8, 399–412 (2022).

    Article 

    Google Scholar
     

  • Zheng, Y. et al. Electric vehicle battery charging/swap stations in distribution systems: Comparison study and optimal planning. IEEE Trans. Power Syst. 29(1), 221–229 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Reddy, K., Satish, M. & Selvajyothi, K. Investment analysis for optimal planning of electric vehicle charging station on a reconfigured unbalanced radial distribution system. Electr. Eng. 104(3), 1725–1739 (2022).

    Article 

    Google Scholar
     

  • Long, Y. L. et al. Impact of EV load uncertainty on optimal planning for electric vehicle charging station. Sci. China Technol. Sci. 64, 2469–2476 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Luo, L. et al. Optimal planning of electric vehicle charging stations comprising multiple types of charging facilities. Appl. Energy 226, 1087–1099 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Q. et al. Optimal planning of flood-resilient electric vehicle charging stations. Comput.-Aid. Civil Infrastruct. Eng. 38(4), 489–507 (2023).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Translate »